1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
|
//
// Bit Bang I2C library
// Copyright (c) 2018 BitBank Software, Inc.
// Written by Larry Bank (bitbank@pobox.com)
// Project started 10/12/2018
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
#include <stdio.h>
#include "pico/stdlib.h"
#include "hardware/gpio.h"
#include "pico/binary_info.h"
#include "hardware/i2c.h"
#include "BitBang_I2C.h"
#define I2C_PORT i2c1
static uint8_t SDA_READ(uint8_t iSDA)
{
return gpio_get(iSDA);
}
static void SCL_HIGH(uint8_t iSCL)
{
gpio_init(iSCL);
gpio_set_dir(iSCL, GPIO_IN);
}
static void SCL_LOW(uint8_t iSCL)
{
gpio_set_dir(iSCL, GPIO_OUT);
gpio_put(iSCL, LOW);
}
static void SDA_HIGH(uint8_t iSDA)
{
gpio_init(iSDA);
gpio_set_dir(iSDA, GPIO_IN);
}
static void SDA_LOW(uint8_t iSDA)
{
gpio_set_dir(iSDA, GPIO_OUT);
gpio_put(iSDA, LOW);
}
//
// Transmit a byte and read the ack bit
// if we get a NACK (negative acknowledge) return 0
// otherwise return 1 for success
//
static int i2cByteOut(BBI2C *pI2C, uint8_t b)
{
uint8_t i, ack;
uint8_t iSDA = pI2C->iSDA;
uint8_t iSCL = pI2C->iSCL; // in case of bad C compiler
int iDelay = pI2C->iDelay;
for (i=0; i<8; i++)
{
if (b & 0x80)
SDA_HIGH(iSDA); // set data line to 1
else
SDA_LOW(iSDA); // set data line to 0
SCL_HIGH(iSCL); // clock high (slave latches data)
sleep_us(iDelay);
SCL_LOW(iSCL); // clock low
b <<= 1;
sleep_us(iDelay);
} // for i
// read ack bit
SDA_HIGH(iSDA); // set data line for reading
SCL_HIGH(iSCL); // clock line high
sleep_us(iDelay); // DEBUG - delay/2
ack = SDA_READ(iSDA);
SCL_LOW(iSCL); // clock low
sleep_us(iDelay); // DEBUG - delay/2
SDA_LOW(iSDA); // data low
return (ack == 0) ? 1:0; // a low ACK bit means success
} /* i2cByteOut() */
static int i2cByteOutFast(BBI2C *pI2C, uint8_t b)
{
uint8_t i, ack, iSDA, iSCL;
int iDelay;
iSDA = pI2C->iSDA;
iSCL = pI2C->iSCL;
iDelay = pI2C->iDelay;
if (b & 0x80)
SDA_HIGH(iSDA); // set data line to 1
else
SDA_LOW(iSDA); // set data line to 0
for (i=0; i<8; i++)
{
SCL_HIGH(iSCL); // clock high (slave latches data)
sleep_us(iDelay);
SCL_LOW(iSCL); // clock low
sleep_us(iDelay);
} // for i
// read ack bit
SDA_HIGH(iSDA); // set data line for reading
SCL_HIGH(iSCL); // clock line high
sleep_us(pI2C->iDelay); // DEBUG - delay/2
ack = SDA_READ(iSDA);
SCL_LOW(iSCL); // clock low
sleep_us(pI2C->iDelay); // DEBUG - delay/2
SDA_LOW(iSDA); // data low
return (ack == 0) ? 1:0; // a low ACK bit means success
} /* i2cByteOutFast() */
//
// Receive a byte and read the ack bit
// if we get a NACK (negative acknowledge) return 0
// otherwise return 1 for success
//
static uint8_t i2cByteIn(BBI2C *pI2C, uint8_t bLast)
{
uint8_t i;
uint8_t b = 0;
SDA_HIGH(pI2C->iSDA); // set data line as input
for (i=0; i<8; i++)
{
sleep_us(pI2C->iDelay); // wait for data to settle
SCL_HIGH(pI2C->iSCL); // clock high (slave latches data)
b <<= 1;
if (SDA_READ(pI2C->iSDA) != 0) // read the data bit
b |= 1; // set data bit
SCL_LOW(pI2C->iSCL); // cloc low
} // for i
if (bLast)
SDA_HIGH(pI2C->iSDA); // last byte sends a NACK
else
SDA_LOW(pI2C->iSDA);
SCL_HIGH(pI2C->iSCL); // clock high
sleep_us(pI2C->iDelay);
SCL_LOW(pI2C->iSCL); // clock low to send ack
sleep_us(pI2C->iDelay);
SDA_LOW(pI2C->iSDA); // data low
return b;
} /* i2cByteIn() */
//
// Send I2C STOP condition
//
static void i2cEnd(BBI2C *pI2C)
{
SDA_LOW(pI2C->iSDA); // data line low
sleep_us(pI2C->iDelay);
SCL_HIGH(pI2C->iSCL); // clock high
sleep_us(pI2C->iDelay);
SDA_HIGH(pI2C->iSDA); // data high
sleep_us(pI2C->iDelay);
} /* i2cEnd() */
static int i2cBegin(BBI2C *pI2C, uint8_t addr, uint8_t bRead)
{
int rc;
SDA_LOW(pI2C->iSDA); // data line low first
sleep_us(pI2C->iDelay);
SCL_LOW(pI2C->iSCL); // then clock line low is a START signal
addr <<= 1;
if (bRead)
addr++; // set read bit
rc = i2cByteOut(pI2C, addr); // send the slave address and R/W bit
return rc;
} /* i2cBegin() */
static int i2cWrite(BBI2C *pI2C, uint8_t *pData, int iLen)
{
uint8_t b;
int rc, iOldLen = iLen;
rc = 1;
while (iLen && rc == 1)
{
b = *pData++;
// if (b == 0xff || b == 0)
// rc = i2cByteOutFast(pI2C, b); // speed it up a bit more if all bits are ==
// else
rc = i2cByteOut(pI2C, b);
if (rc == 1) // success
{
iLen--;
}
} // for each byte
return (rc == 1) ? (iOldLen - iLen) : 0; // 0 indicates bad ack from sending a byte
} /* i2cWrite() */
static void i2cRead(BBI2C *pI2C, uint8_t *pData, int iLen)
{
while (iLen--)
{
*pData++ = i2cByteIn(pI2C, iLen == 0);
} // for each byte
} /* i2cRead() */
//
// Initialize the I2C BitBang library
// Pass the pin numbers used for SDA and SCL
// as well as the clock rate in Hz
//
void I2CInit(BBI2C *pI2C, uint32_t iClock)
{
if (pI2C == NULL) return;
if (pI2C->bWire) // use Wire library
{
i2c_init(I2C_PORT, iClock);
gpio_set_function(pI2C->iSDA, GPIO_FUNC_I2C);
gpio_set_function(pI2C->iSCL, GPIO_FUNC_I2C);
gpio_pull_up(pI2C->iSDA);
gpio_pull_up(pI2C->iSCL);
return;
}
if (pI2C->iSDA < 0xa0)
{
gpio_init(pI2C->iSDA);
gpio_init(pI2C->iSCL);
// gpio_set_dir(pI2C->iSDA, GPIO_OUT);
// gpio_set_dir(pI2C->iSCL, GPIO_OUT);
// gpio_put(pI2C->iSDA, LOW); // setting low = enabling as outputs
// gpio_put(pI2C->iSCL, LOW);
gpio_set_dir(pI2C->iSDA, GPIO_IN); // let the lines float (tri-state)
gpio_set_dir(pI2C->iSCL, GPIO_IN);
}
// For now, we only support 100, 400 or 800K clock rates
// all other values default to 100K
if (iClock >= 1000000)
pI2C->iDelay = 0; // the code execution is enough delay
else if (iClock >= 800000)
pI2C->iDelay = 1;
else if (iClock >= 400000)
pI2C->iDelay = 2;
else if (iClock >= 100000)
pI2C->iDelay = 10;
else pI2C->iDelay = (uint16_t)(1000000 / iClock);
} /* i2cInit() */
//
// Test a specific I2C address to see if a device responds
// returns 0 for no response, 1 for a response
//
uint8_t I2CTest(BBI2C *pI2C, uint8_t addr)
{
uint8_t response = 0;
if (pI2C->bWire)
{
int ret;
uint8_t rxdata;
ret = i2c_read_blocking(I2C_PORT, addr, &rxdata, 1, false);
return (ret >= 0);
}
if (i2cBegin(pI2C, addr, 0)) // try to write to the given address
{
response = 1;
}
i2cEnd(pI2C);
return response;
} /* I2CTest() */
//
// Scans for I2C devices on the bus
// returns a bitmap of devices which are present (128 bits = 16 bytes, LSB first)
// A set bit indicates that a device responded at that address
//
void I2CScan(BBI2C *pI2C, uint8_t *pMap)
{
int i;
for (i=0; i<16; i++) // clear the bitmap
pMap[i] = 0;
for (i=1; i<128; i++) // try every address
{
if (I2CTest(pI2C, i))
{
pMap[i >> 3] |= (1 << (i & 7));
}
}
} /* I2CScan() */
//
// Write I2C data
// quits if a NACK is received and returns 0
// otherwise returns the number of bytes written
//
int I2CWrite(BBI2C *pI2C, uint8_t iAddr, uint8_t *pData, int iLen)
{
int rc = 0;
if (pI2C->bWire)
{
rc = i2c_write_blocking(I2C_PORT, iAddr, pData, iLen, true); // true to keep master control of bus
return rc >= 0 ? iLen : 0;
}
rc = i2cBegin(pI2C, iAddr, 0);
if (rc == 1) // slave sent ACK for its address
{
rc = i2cWrite(pI2C, pData, iLen);
}
i2cEnd(pI2C);
return rc; // returns the number of bytes sent or 0 for error
} /* I2CWrite() */
//
// Read N bytes starting at a specific I2C internal register
//
int I2CReadRegister(BBI2C *pI2C, uint8_t iAddr, uint8_t u8Register, uint8_t *pData, int iLen)
{
int rc;
if (pI2C->bWire) // use the wire library
{
rc = i2c_write_blocking(I2C_PORT, iAddr, &u8Register, 1, true); // true to keep master control of bus
if (rc >= 0) {
rc = i2c_read_blocking(I2C_PORT, iAddr, pData, iLen, false);
}
return (rc >= 0);
}
rc = i2cBegin(pI2C, iAddr, 0); // start a write operation
if (rc == 1) // slave sent ACK for its address
{
rc = i2cWrite(pI2C, &u8Register, 1); // write the register we want to read from
if (rc == 1)
{
i2cEnd(pI2C);
rc = i2cBegin(pI2C, iAddr, 1); // start a read operation
if (rc == 1)
{
i2cRead(pI2C, pData, iLen);
}
}
}
i2cEnd(pI2C);
return rc; // returns 1 for success, 0 for error
} /* I2CReadRegister() */
//
// Read N bytes
//
int I2CRead(BBI2C *pI2C, uint8_t iAddr, uint8_t *pData, int iLen)
{
int rc;
if (pI2C->bWire) // use the wire library
{
rc = i2c_read_blocking(I2C_PORT, iAddr, pData, iLen, false);
return (rc >= 0);
}
rc = i2cBegin(pI2C, iAddr, 1);
if (rc == 1) // slave sent ACK for its address
{
i2cRead(pI2C, pData, iLen);
}
i2cEnd(pI2C);
return rc; // returns 1 for success, 0 for error
} /* I2CRead() */
//
// Figure out what device is at that address
// returns the enumerated value
//
int I2CDiscoverDevice(BBI2C *pI2C, uint8_t i)
{
uint8_t j, cTemp[8];
int iDevice = DEVICE_UNKNOWN;
if (i == 0x3c || i == 0x3d) // Probably an OLED display
{
I2CReadRegister(pI2C, i, 0x00, cTemp, 1);
cTemp[0] &= 0xbf; // mask off power on/off bit
if (cTemp[0] == 0x8) // SH1106
iDevice = DEVICE_SH1106;
else if (cTemp[0] == 3 || cTemp[0] == 6)
iDevice = DEVICE_SSD1306;
return iDevice;
}
if (i == 0x34 || i == 0x35) // Probably an AXP202/AXP192 PMU chip
{
I2CReadRegister(pI2C, i, 0x03, cTemp, 1); // chip ID
if (cTemp[0] == 0x41)
return DEVICE_AXP202;
else if (cTemp[0] == 0x03)
return DEVICE_AXP192;
}
if (i >= 0x40 && i <= 0x4f) // check for TI INA219 power measurement sensor
{
I2CReadRegister(pI2C, i, 0x00, cTemp, 2);
if (cTemp[0] == 0x39 && cTemp[1] == 0x9f)
return DEVICE_INA219;
}
// Check for Microchip 24AAXXXE64 family serial 2 Kbit EEPROM
if (i >= 0x50 && i <= 0x57) {
uint32_t u32Temp = 0;
I2CReadRegister(pI2C, i, 0xf8, (uint8_t *)&u32Temp,
3); // check for Microchip's OUI
if (u32Temp == 0x000004a3 || u32Temp == 0x00001ec0 ||
u32Temp == 0x00d88039 || u32Temp == 0x005410ec)
return DEVICE_24AAXXXE64;
}
// else if (i == 0x5b) // MLX90615?
// {
// I2CReadRegister(pI2C, i, 0x10, cTemp, 3);
// for (j=0; j<3; j++) Serial.println(cTemp[j], HEX);
// }
// try to identify it from the known devices using register contents
{
// Check for TI HDC1080
I2CReadRegister(pI2C, i, 0xff, cTemp, 2);
if (cTemp[0] == 0x10 && cTemp[1] == 0x50)
return DEVICE_HDC1080;
// Check for BME680
if (i == 0x76 || i == 0x77)
{
I2CReadRegister(pI2C, i, 0xd0, cTemp, 1); // chip ID
if (cTemp[0] == 0x61) // BME680
return DEVICE_BME680;
}
// Check for VL53L0X
I2CReadRegister(pI2C, i, 0xc0, cTemp, 3);
if (cTemp[0] == 0xee && cTemp[1] == 0xaa && cTemp[2] == 0x10)
return DEVICE_VL53L0X;
// Check for CCS811
I2CReadRegister(pI2C, i, 0x20, cTemp, 1);
if (cTemp[0] == 0x81) // Device ID
return DEVICE_CCS811;
// Check for LIS3DSH accelerometer from STMicro
I2CReadRegister(pI2C, i, 0x0f, cTemp, 1);
if (cTemp[0] == 0x3f) // WHO_AM_I
return DEVICE_LIS3DSH;
// Check for LIS3DH accelerometer from STMicro
I2CReadRegister(pI2C, i, 0x0f, cTemp, 1);
if (cTemp[0] == 0x33) // WHO_AM_I
return DEVICE_LIS3DH;
// Check for LSM9DS1 magnetometer/gyro/accel sensor from STMicro
I2CReadRegister(pI2C, i, 0x0f, cTemp, 1);
if (cTemp[0] == 0x68) // WHO_AM_I
return DEVICE_LSM9DS1;
// Check for LPS25H pressure sensor from STMicro
I2CReadRegister(pI2C, i, 0x0f, cTemp, 1);
if (cTemp[0] == 0xbd) // WHO_AM_I
return DEVICE_LPS25H;
// Check for HTS221 temp/humidity sensor from STMicro
I2CReadRegister(pI2C, i, 0x0f, cTemp, 1);
if (cTemp[0] == 0xbc) // WHO_AM_I
return DEVICE_HTS221;
// Check for MAG3110
I2CReadRegister(pI2C, i, 0x07, cTemp, 1);
if (cTemp[0] == 0xc4) // WHO_AM_I
return DEVICE_MAG3110;
// Check for LM8330 keyboard controller
I2CReadRegister(pI2C, i, 0x80, cTemp, 2);
if (cTemp[0] == 0x0 && cTemp[1] == 0x84) // manufacturer code + software revision
return DEVICE_LM8330;
// Check for MAX44009
if (i == 0x4a || i == 0x4b)
{
for (j=0; j<8; j++)
I2CReadRegister(pI2C, i, j, &cTemp[j], 1); // check for power-up reset state of registers
if ((cTemp[2] == 3 || cTemp[2] == 2) && cTemp[6] == 0 && cTemp[7] == 0xff)
return DEVICE_MAX44009;
}
// Check for ADS1115
I2CReadRegister(pI2C, i, 0x02, cTemp, 2); // Lo_thresh defaults to 0x8000
I2CReadRegister(pI2C, i, 0x03, &cTemp[2], 2); // Hi_thresh defaults to 0x7fff
if (cTemp[0] == 0x80 && cTemp[1] == 0x00 && cTemp[2] == 0x7f && cTemp[3] == 0xff)
return DEVICE_ADS1115;
// Check for MCP9808
I2CReadRegister(pI2C, i, 0x06, cTemp, 2); // manufacturer ID && get device ID/revision
I2CReadRegister(pI2C, i, 0x07, &cTemp[2], 2); // need to read them individually
if (cTemp[0] == 0 && cTemp[1] == 0x54 && cTemp[2] == 0x04 && cTemp[3] == 0x00)
return DEVICE_MCP9808;
// Check for BMP280/BME280
I2CReadRegister(pI2C, i, 0xd0, cTemp, 1);
if (cTemp[0] == 0x55) // BMP180
return DEVICE_BMP180;
else if (cTemp[0] == 0x58)
return DEVICE_BMP280;
else if (cTemp[0] == 0x60) // BME280
return DEVICE_BME280;
// Check for LSM6DS3
I2CReadRegister(pI2C, i, 0x0f, cTemp, 1); // WHO_AM_I
if (cTemp[0] == 0x69)
return DEVICE_LSM6DS3;
// Check for ADXL345
I2CReadRegister(pI2C, i, 0x00, cTemp, 1); // DEVID
if (cTemp[0] == 0xe5)
return DEVICE_ADXL345;
// Check for MPU-60x0i, MPU-688x, and MPU-9250
I2CReadRegister(pI2C, i, 0x75, cTemp, 1);
if (cTemp[0] == (i & 0xfe)) // Current I2C address (low bit set to 0)
return DEVICE_MPU6000;
else if (cTemp[0] == 0x71)
return DEVICE_MPU9250;
else if (cTemp[0] == 0x19)
return DEVICE_MPU6886;
// Check for DS3231 RTC
I2CReadRegister(pI2C, i, 0x0e, cTemp, 1); // read the control register
if (i == 0x68 &&
cTemp[0] == 0x1c) // fixed I2C address and power on reset value
return DEVICE_DS3231;
// Check for DS1307 RTC
I2CReadRegister(pI2C, i, 0x07, cTemp, 1); // read the control register
if (i == 0x68 &&
cTemp[0] == 0x03) // fixed I2C address and power on reset value
return DEVICE_DS1307;
}
return iDevice;
} /* I2CDiscoverDevice() */
|