1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89/* ui-clone.c: functions for http cloning, based on
* git's http-backend.c by Shawn O. Pearce
*
* Copyright (C) 2006-2014 cgit Development Team <cgit@lists.zx2c4.com>
*
* Licensed under GNU General Public License v2
* (see COPYING for full license text)
*/
#include "cgit.h"
#include "ui-clone.h"
#include "html.h"
#include "ui-shared.h"
static int print_ref_info(const char *refname, const unsigned char *sha1,
int flags, void *cb_data)
{
struct object *obj;
if (!(obj = parse_object(sha1)))
return 0;
htmlf("%s\t%s\n", sha1_to_hex(sha1), refname);
if (obj->type == OBJ_TAG) {
if (!(obj = deref_tag(obj, refname, 0)))
return 0;
htmlf("%s\t%s^{}\n", sha1_to_hex(obj->sha1), refname);
}
return 0;
}
static void print_pack_info(void)
{
struct packed_git *pack;
int ofs;
ctx.page.mimetype = "text/plain";
ctx.page.filename = "objects/info/packs";
cgit_print_http_headers();
ofs = strlen(ctx.repo->path) + strlen("/objects/pack/");
prepare_packed_git();
for (pack = packed_git; pack; pack = pack->next)
if (pack->pack_local)
htmlf("P %s\n", pack->pack_name + ofs);
}
static void send_file(char *path)
{
struct stat st;
if (stat(path, &st)) {
switch (errno) {
case ENOENT:
html_status(404, "Not found", 0);
break;
case EACCES:
html_status(403, "Forbidden", 0);
break;
default:
html_status(pre { line-height: 125%; }
td.linenos .normal { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; }
span.linenos { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; }
td.linenos .special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; }
span.linenos.special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; }
.highlight .hll { background-color: #ffffcc }
.highlight .c { color: #888888 } /* Comment */
.highlight .err { color: #a61717; background-color: #e3d2d2 } /* Error */
.highlight .k { color: #008800; font-weight: bold } /* Keyword */
.highlight .ch { color: #888888 } /* Comment.Hashbang */
.highlight .cm { color: #888888 } /* Comment.Multiline */
.highlight .cp { color: #cc0000; font-weight: bold } /* Comment.Preproc */
.highlight .cpf { color: #888888 } /* Comment.PreprocFile */
.highlight .c1 { color: #888888 } /* Comment.Single */
.highlight .cs { color: #cc0000; font-weight: bold; background-color: #fff0f0 } /* Comment.Special */
.highlight .gd { color: #000000; background-color: #ffdddd } /* Generic.Deleted */
.highlight .ge { font-style: italic } /* Generic.Emph */
.highlight .gr { color: #aa0000 } /* Generic.Error */
.highlight .gh { color: #333333 } /* Generic.Heading */
.highlight .gi { color: #000000; background-color: #ddffdd } /* Generic.Inserted */
.highlight .go { color: #888888 } /* Generic.Output */
.highlight .gp { color: #555555 } /* Generic.Prompt */
.highlight .gs { font-weight: bold } /* Generic.Strong */
.highlight .gu { color: #666666 } /* Generic.Subheading */
.highlight .gt { color: #aa0000 } /* Generic.Traceback */
.highlight .kc { color: #008800; font-weight: bold } /* Keyword.Constant */
.highlight .kd { color: #008800; font-weight: bold } /* Keyword.Declaration */
.highlight .kn { color: #008800; font-weight: bold } /* Keyword.Namespace */
.highlight .kp { color: #008800 } /* Keyword.Pseudo */
.highlight .kr { color: #008800; font-weight: bold } /* Keyword.Reserved */
.highlight .kt { color: #888888; font-weight: bold } /* Keyword.Type */
.highlight .m { color: #0000DD; font-weight: bold } /* Literal.Number */
.highlight .s { color: #dd2200; background-color: #fff0f0 } /* Literal.String */
.highlight .na { color: #336699 } /* Name.Attribute */
.highlight .nb { color: #003388 } /* Name.Builtin */
.highlight .nc { color: #bb0066; font-weight: bold } /* Name.Class */
.highlight .no { color: #003366; font-weight: bold } /* Name.Constant */
.highlight .nd { color: #555555 } /* Name.Decorator */
.highlight .ne { color: #bb0066; font-weight: bold } /* Name.Exception */
.highlight .nf { color: #0066bb; font-weight: bold } /* Name.Function */
.highlight .nl { color: #336699; font-style: italic } /* Name.Label */
.highlight .nn { color: #bb0066; font-weight: bold } /* Name.Namespace */
.highlight .py { color: #336699; font-weight: bold } /* Name.Property */
.highlight .nt { color: #bb0066; font-weight: bold } /* Name.Tag */
.highlight .nv { color: #336699 } /* Name.Variable */
.highlight .ow { color: #008800 } /* Operator.Word */
.highlight .w { color: #bbbbbb } /* Text.Whitespace */
.highlight .mb { color: #0000DD; font-weight: bold } /* Literal.Number.Bin */
.highlight .mf { color: #0000DD; font-weight: bold } /* Literal.Number.Float */
.highlight .mh { color: #0000DD; font-weight: bold } /* Literal.Number.Hex */
.highlight .mi { color: #0000DD; font-weight: bold } /* Literal.Number.Integer */
.highlight .mo { color: #0000DD; font-weight: bold } /* Literal.Number.Oct */
.highlight .sa { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Affix */
.highlight .sb { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Backtick */
.highlight .sc { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Char */
.highlight .dl { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Delimiter */
.highlight .sd { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Doc */
.highlight .s2 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Double */
.highlight .se { color: #0044dd; background-color: #fff0f0 } /* Literal.String.Escape */
.highlight .sh { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Heredoc */
.highlight .si { color: #3333bb; background-color: #fff0f0 } /* Literal.String.Interpol */
.highlight .sx { color: #22bb22; background-color: #f0fff0 } /* Literal.String.Other */
.highlight .sr { color: #008800; background-color: #fff0ff } /* Literal.String.Regex */
.highlight .s1 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Single */
.highlight .ss { color: #aa6600; background-color: #fff0f0 } /* Literal.String.Symbol */
.highlight .bp { color: #003388 } /* Name.Builtin.Pseudo */
.highlight .fm { color: #0066bb; font-weight: bold } /* Name.Function.Magic */
.highlight .vc { color: #336699 } /* Name.Variable.Class */
.highlight .vg { color: #dd7700 } /* Name.Variable.Global */
.highlight .vi { color: #3333bb } /* Name.Variable.Instance */
.highlight .vm { color: #336699 } /* Name.Variable.Magic */
.highlight .il { color: #0000DD; font-weight: bold } /* Literal.Number.Integer.Long *///
// Bit Bang I2C library
// Copyright (c) 2018 BitBank Software, Inc.
// Written by Larry Bank (bitbank@pobox.com)
// Project started 10/12/2018
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
#include <stdio.h>
#include "pico/stdlib.h"
#include "hardware/gpio.h"
#include "pico/binary_info.h"
#include "hardware/i2c.h"
#include "BitBang_I2C.h"
#define I2C_PORT i2c1
static uint8_t SDA_READ(uint8_t iSDA)
{
return gpio_get(iSDA);
}
static void SCL_HIGH(uint8_t iSCL)
{
gpio_init(iSCL);
gpio_set_dir(iSCL, GPIO_IN);
}
static void SCL_LOW(uint8_t iSCL)
{
gpio_set_dir(iSCL, GPIO_OUT);
gpio_put(iSCL, LOW);
}
static void SDA_HIGH(uint8_t iSDA)
{
gpio_init(iSDA);
gpio_set_dir(iSDA, GPIO_IN);
}
static void SDA_LOW(uint8_t iSDA)
{
gpio_set_dir(iSDA, GPIO_OUT);
gpio_put(iSDA, LOW);
}
//
// Transmit a byte and read the ack bit
// if we get a NACK (negative acknowledge) return 0
// otherwise return 1 for success
//
static int i2cByteOut(BBI2C *pI2C, uint8_t b)
{
uint8_t i, ack;
uint8_t iSDA = pI2C->iSDA;
uint8_t iSCL = pI2C->iSCL; // in case of bad C compiler
int iDelay = pI2C->iDelay;
for (i=0; i<8; i++)
{
if (b & 0x80)
SDA_HIGH(iSDA); // set data line to 1
else
SDA_LOW(iSDA); // set data line to 0
SCL_HIGH(iSCL); // clock high (slave latches data)
sleep_us(iDelay);
SCL_LOW(iSCL); // clock low
b <<= 1;
sleep_us(iDelay);
} // for i
// read ack bit
SDA_HIGH(iSDA); // set data line for reading
SCL_HIGH(iSCL); // clock line high
sleep_us(iDelay); // DEBUG - delay/2
ack = SDA_READ(iSDA);
SCL_LOW(iSCL); // clock low
sleep_us(iDelay); // DEBUG - delay/2
SDA_LOW(iSDA); // data low
return (ack == 0) ? 1:0; // a low ACK bit means success
} /* i2cByteOut() */
static int i2cByteOutFast(BBI2C *pI2C, uint8_t b)
{
uint8_t i, ack, iSDA, iSCL;
int iDelay;
iSDA = pI2C->iSDA;
iSCL = pI2C->iSCL;
iDelay = pI2C->iDelay;
if (b & 0x80)
SDA_HIGH(iSDA); // set data line to 1
else
SDA_LOW(iSDA); // set data line to 0
for (i=0; i<8; i++)
{
SCL_HIGH(iSCL); // clock high (slave latches data)
sleep_us(iDelay);
SCL_LOW(iSCL); // clock low
sleep_us(iDelay);
} // for i
// read ack bit
SDA_HIGH(iSDA); // set data line for reading
SCL_HIGH(iSCL); // clock line high
sleep_us(pI2C->iDelay); // DEBUG - delay/2
ack = SDA_READ(iSDA);
SCL_LOW(iSCL); // clock low
sleep_us(pI2C->iDelay); // DEBUG - delay/2
SDA_LOW(iSDA); // data low
return (ack == 0) ? 1:0; // a low ACK bit means success
} /* i2cByteOutFast() */
//
// Receive a byte and read the ack bit
// if we get a NACK (negative acknowledge) return 0
// otherwise return 1 for success
//
static uint8_t i2cByteIn(BBI2C *pI2C, uint8_t bLast)
{
uint8_t i;
uint8_t b = 0;
SDA_HIGH(pI2C->iSDA); // set data line as input
for (i=0; i<8; i++)
{
sleep_us(pI2C->iDelay); // wait for data to settle
SCL_HIGH(pI2C->iSCL); // clock high (slave latches data)
b <<= 1;
if (SDA_READ(pI2C->iSDA) != 0) // read the data bit
b |= 1; // set data bit
SCL_LOW(pI2C->iSCL); // cloc low
} // for i
if (bLast)
SDA_HIGH(pI2C->iSDA); // last byte sends a NACK
else
SDA_LOW(pI2C->iSDA);
SCL_HIGH(pI2C->iSCL); // clock high
sleep_us(pI2C->iDelay);
SCL_LOW(pI2C->iSCL); // clock low to send ack
sleep_us(pI2C->iDelay);
SDA_LOW(pI2C->iSDA); // data low
return b;
} /* i2cByteIn() */
//
// Send I2C STOP condition
//
static void i2cEnd(BBI2C *pI2C)
{
SDA_LOW(pI2C->iSDA); // data line low
sleep_us(pI2C->iDelay);
SCL_HIGH(pI2C->iSCL); // clock high
sleep_us(pI2C->iDelay);
SDA_HIGH(pI2C->iSDA); // data high
sleep_us(pI2C->iDelay);
} /* i2cEnd() */
static int i2cBegin(BBI2C *pI2C, uint8_t addr, uint8_t bRead)
{
int rc;
SDA_LOW(pI2C->iSDA); // data line low first
sleep_us(pI2C->iDelay);
SCL_LOW(pI2C->iSCL); // then clock line low is a START signal
addr <<= 1;
if (bRead)
addr++; // set read bit
rc = i2cByteOut(pI2C, addr); // send the slave address and R/W bit
return rc;
} /* i2cBegin() */
static int i2cWrite(BBI2C *pI2C, uint8_t *pData, int iLen)
{
uint8_t b;
int rc, iOldLen = iLen;
rc = 1;
while (iLen && rc == 1)
{
b = *pData++;
// if (b == 0xff || b == 0)
// rc = i2cByteOutFast(pI2C, b); // speed it up a bit more if all bits are ==
// else
rc = i2cByteOut(pI2C, b);
if (rc == 1) // success
{
iLen--;
}
} // for each byte
return (rc == 1) ? (iOldLen - iLen) : 0; // 0 indicates bad ack from sending a byte
} /* i2cWrite() */
static void i2cRead(BBI2C *pI2C, uint8_t *pData, int iLen)
{
while (iLen--)
{
*pData++ = i2cByteIn(pI2C, iLen == 0);
} // for each byte
} /* i2cRead() */
//
// Initialize the I2C BitBang library
// Pass the pin numbers used for SDA and SCL
// as well as the clock rate in Hz
//
void I2CInit(BBI2C *pI2C, uint32_t iClock)
{
if (pI2C == NULL) return;
if (pI2C->bWire) // use Wire library
{
i2c_init(I2C_PORT, iClock);
gpio_set_function(pI2C->iSDA, GPIO_FUNC_I2C);
gpio_set_function(pI2C->iSCL, GPIO_FUNC_I2C);
gpio_pull_up(pI2C->iSDA);
gpio_pull_up(pI2C->iSCL);
return;
}
if (pI2C->iSDA < 0xa0)
{
gpio_init(pI2C->iSDA);
gpio_init(pI2C->iSCL);
// gpio_set_dir(pI2C->iSDA, GPIO_OUT);
// gpio_set_dir(pI2C->iSCL, GPIO_OUT);
// gpio_put(pI2C->iSDA, LOW); // setting low = enabling as outputs
// gpio_put(pI2C->iSCL, LOW);
gpio_set_dir(pI2C->iSDA, GPIO_IN); // let the lines float (tri-state)
gpio_set_dir(pI2C->iSCL, GPIO_IN);
}
// For now, we only support 100, 400 or 800K clock rates
// all other values default to 100K
if (iClock >= 1000000)
pI2C->iDelay = 0; // the code execution is enough delay
else if (iClock >= 800000)
pI2C->iDelay = 1;
else if (iClock >= 400000)
pI2C->iDelay = 2;
else if (iClock >= 100000)
pI2C->iDelay = 10;
else pI2C->iDelay = (uint16_t)(1000000 / iClock);
} /* i2cInit() */
//
// Test a specific I2C address to see if a device responds
// returns 0 for no response, 1 for a response
//
uint8_t I2CTest(BBI2C *pI2C, uint8_t addr)
{
uint8_t response = 0;
if (pI2C->bWire)
{
int ret;
uint8_t rxdata;
ret = i2c_read_blocking(I2C_PORT, addr, &rxdata, 1, false);
return (ret >= 0);
}
if (i2cBegin(pI2C, addr, 0)) // try to write to the given address
{
response = 1;
}
i2cEnd(pI2C);
return response;
} /* I2CTest() */
//
// Scans for I2C devices on the bus
// returns a bitmap of devices which are present (128 bits = 16 bytes, LSB first)
// A set bit indicates that a device responded at that address
//
void I2CScan(BBI2C *pI2C, uint8_t *pMap)
{
int i;
for (i=0; i<16; i++) // clear the bitmap
pMap[i] = 0;
for (i=1; i<128; i++) // try every address
{
if (I2CTest(pI2C, i))
{
pMap[i >> 3] |= (1 << (i & 7));
}
}
} /* I2CScan() */
//
// Write I2C data
// quits if a NACK is received and returns 0
// otherwise returns the number of bytes written
//
int I2CWrite(BBI2C *pI2C, uint8_t iAddr, uint8_t *pData, int iLen)
{
int rc = 0;
if (pI2C->bWire)
{
rc = i2c_write_blocking(I2C_PORT, iAddr, pData, iLen, true); // true to keep master control of bus
return rc >= 0 ? iLen : 0;
}
rc = i2cBegin(pI2C, iAddr, 0);
if (rc == 1) // slave sent ACK for its address
{
rc = i2cWrite(pI2C, pData, iLen);
}
i2cEnd(pI2C);
return rc; // returns the number of bytes sent or 0 for error
} /* I2CWrite() */
//
// Read N bytes starting at a specific I2C internal register
//
int I2CReadRegister(BBI2C *pI2C, uint8_t iAddr, uint8_t u8Register, uint8_t *pData, int iLen)
{
int rc;
if (pI2C->bWire) // use the wire library
{
rc = i2c_write_blocking(I2C_PORT, iAddr, &u8Register, 1, true); // true to keep master control of bus
if (rc >= 0) {
rc = i2c_read_blocking(I2C_PORT, iAddr, pData, iLen, false);
}
return (rc >= 0);
}
rc = i2cBegin(pI2C, iAddr, 0); // start a write operation
if (rc == 1) // slave sent ACK for its address
{
rc = i2cWrite(pI2C, &u8Register, 1); // write the register we want to read from
if (rc == 1)
{
i2cEnd(pI2C);
rc = i2cBegin(pI2C, iAddr, 1); // start a read operation
if (rc == 1)
{
i2cRead(pI2C, pData, iLen);
}
}
}
i2cEnd(pI2C);
return rc; // returns 1 for success, 0 for error
} /* I2CReadRegister() */
//
// Read N bytes
//
int I2CRead(BBI2C *pI2C, uint8_t iAddr, uint8_t *pData, int iLen)
{
int rc;
if (pI2C->bWire) // use the wire library
{
rc = i2c_read_blocking(I2C_PORT, iAddr, pData, iLen, false);
return (rc >= 0);
}
rc = i2cBegin(pI2C, iAddr, 1);
if (rc == 1) // slave sent ACK for its address
{
i2cRead(pI2C, pData, iLen);
}
i2cEnd(pI2C);
return rc; // returns 1 for success, 0 for error
} /* I2CRead() */
//
// Figure out what device is at that address
// returns the enumerated value
//
int I2CDiscoverDevice(BBI2C *pI2C, uint8_t i)
{
uint8_t j, cTemp[8];
int iDevice = DEVICE_UNKNOWN;
if (i == 0x3c || i == 0x3d) // Probably an OLED display
{
I2CReadRegister(pI2C, i, 0x00, cTemp, 1);
cTemp[0] &= 0xbf; // mask off power on/off bit
if (cTemp[0] == 0x8) // SH1106
iDevice = DEVICE_SH1106;
else if (cTemp[0] == 3 || cTemp[0] == 6)
iDevice = DEVICE_SSD1306;
return iDevice;
}
if (i == 0x34 || i == 0x35) // Probably an AXP202/AXP192 PMU chip
{
I2CReadRegister(pI2C, i, 0x03, cTemp, 1); // chip ID
if (cTemp[0] == 0x41)
return DEVICE_AXP202;
else if (cTemp[0] == 0x03)
return DEVICE_AXP192;
}
if (i >= 0x40 && i <= 0x4f) // check for TI INA219 power measurement sensor
{
I2CReadRegister(pI2C, i, 0x00, cTemp, 2);
if (cTemp[0] == 0x39 && cTemp[1] == 0x9f)
return DEVICE_INA219;
}
// Check for Microchip 24AAXXXE64 family serial 2 Kbit EEPROM
if (i >= 0x50 && i <= 0x57) {
uint32_t u32Temp = 0;
I2CReadRegister(pI2C, i, 0xf8, (uint8_t *)&u32Temp,
3); // check for Microchip's OUI
if (u32Temp == 0x000004a3 || u32Temp == 0x00001ec0 ||
u32Temp == 0x00d88039 || u32Temp == 0x005410ec)
return DEVICE_24AAXXXE64;
}
// else if (i == 0x5b) // MLX90615?
// {
// I2CReadRegister(pI2C, i, 0x10, cTemp, 3);
// for (j=0; j<3; j++) Serial.println(cTemp[j], HEX);
// }
// try to identify it from the known devices using register contents
{
// Check for TI HDC1080
I2CReadRegister(pI2C, i, 0xff, cTemp, 2);
if (cTemp[0] == 0x10 && cTemp[1] == 0x50)
return DEVICE_HDC1080;
// Check for BME680
if (i == 0x76 || i == 0x77)
{
I2CReadRegister(pI2C, i, 0xd0, cTemp, 1); // chip ID
if (cTemp[0] == 0x61) // BME680
return DEVICE_BME680;
}
// Check for VL53L0X
I2CReadRegister(pI2C, i, 0xc0, cTemp, 3);
if (cTemp[0] == 0xee && cTemp[1] == 0xaa && cTemp[2] == 0x10)
return DEVICE_VL53L0X;
// Check for CCS811
I2CReadRegister(pI2C, i, 0x20, cTemp, 1);
if (cTemp[0] == 0x81) // Device ID
return DEVICE_CCS811;
// Check for LIS3DSH accelerometer from STMicro
I2CReadRegister(pI2C, i, 0x0f, cTemp, 1);
if (cTemp[0] == 0x3f) // WHO_AM_I
return DEVICE_LIS3DSH;
// Check for LIS3DH accelerometer from STMicro
I2CReadRegister(pI2C, i, 0x0f, cTemp, 1);
if (cTemp[0] == 0x33) // WHO_AM_I
return DEVICE_LIS3DH;
// Check for LSM9DS1 magnetometer/gyro/accel sensor from STMicro
I2CReadRegister(pI2C, i, 0x0f, cTemp, 1);
if (cTemp[0] == 0x68) // WHO_AM_I
return DEVICE_LSM9DS1;
// Check for LPS25H pressure sensor from STMicro
I2CReadRegister(pI2C, i, 0x0f, cTemp, 1);
if (cTemp[0] == 0xbd) // WHO_AM_I
return DEVICE_LPS25H;
// Check for HTS221 temp/humidity sensor from STMicro
I2CReadRegister(pI2C, i, 0x0f, cTemp, 1);
if (cTemp[0] == 0xbc) // WHO_AM_I
return DEVICE_HTS221;
// Check for MAG3110
I2CReadRegister(pI2C, i, 0x07, cTemp, 1);
if (cTemp[0] == 0xc4) // WHO_AM_I
return DEVICE_MAG3110;
// Check for LM8330 keyboard controller
I2CReadRegister(pI2C, i, 0x80, cTemp, 2);
if (cTemp[0] == 0x0 && cTemp[1] == 0x84) // manufacturer code + software revision
return DEVICE_LM8330;
// Check for MAX44009
if (i == 0x4a || i == 0x4b)
{
for (j=0; j<8; j++)
I2CReadRegister(pI2C, i, j, &cTemp[j], 1); // check for power-up reset state of registers
if ((cTemp[2] == 3 || cTemp[2] == 2) && cTemp[6] == 0 && cTemp[7] == 0xff)
return DEVICE_MAX44009;
}
// Check for ADS1115
I2CReadRegister(pI2C, i, 0x02, cTemp, 2); // Lo_thresh defaults to 0x8000
I2CReadRegister(pI2C, i, 0x03, &cTemp[2], 2); // Hi_thresh defaults to 0x7fff
if (cTemp[0] == 0x80 && cTemp[1] == 0x00 && cTemp[2] == 0x7f && cTemp[3] == 0xff)
return DEVICE_ADS1115;
// Check for MCP9808
I2CReadRegister(pI2C, i, 0x06, cTemp, 2); // manufacturer ID && get device ID/revision
I2CReadRegister(pI2C, i, 0x07, &cTemp[2], 2); // need to read them individually
if (cTemp[0] == 0 && cTemp[1] == 0x54 && cTemp[2] == 0x04 && cTemp[3] == 0x00)
return DEVICE_MCP9808;
// Check for BMP280/BME280
I2CReadRegister(pI2C, i, 0xd0, cTemp, 1);
if (cTemp[0] == 0x55) // BMP180
return DEVICE_BMP180;
else if (cTemp[0] == 0x58)
return DEVICE_BMP280;
else if (cTemp[0] == 0x60) // BME280
return DEVICE_BME280;
// Check for LSM6DS3
I2CReadRegister(pI2C, i, 0x0f, cTemp, 1); // WHO_AM_I
if (cTemp[0] == 0x69)
return DEVICE_LSM6DS3;
// Check for ADXL345
I2CReadRegister(pI2C, i, 0x00, cTemp, 1); // DEVID
if (cTemp[0] == 0xe5)
return DEVICE_ADXL345;
// Check for MPU-60x0i, MPU-688x, and MPU-9250
I2CReadRegister(pI2C, i, 0x75, cTemp, 1);
if (cTemp[0] == (i & 0xfe)) // Current I2C address (low bit set to 0)
return DEVICE_MPU6000;
else if (cTemp[0] == 0x71)
return DEVICE_MPU9250;
else if (cTemp[0] == 0x19)
return DEVICE_MPU6886;
// Check for DS3231 RTC
I2CReadRegister(pI2C, i, 0x0e, cTemp, 1); // read the control register
if (i == 0x68 &&
cTemp[0] == 0x1c) // fixed I2C address and power on reset value
return DEVICE_DS3231;
// Check for DS1307 RTC
I2CReadRegister(pI2C, i, 0x07, cTemp, 1); // read the control register
if (i == 0x68 &&
cTemp[0] == 0x03) // fixed I2C address and power on reset value
return DEVICE_DS1307;
}
return iDevice;
} /* I2CDiscoverDevice() */
|