//
// Bit Bang I2C library
// Copyright (c) 2018 BitBank Software, Inc.
// Written by Larry Bank (bitbank@pobox.com)
// Project started 10/12/2018
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
//
#include
#include "pico/stdlib.h"
#include "hardware/gpio.h"
#include "pico/binary_info.h"
#ifndef SDL2_BUILD
#include "hardware/i2c.h"
#endif
#include "BitBang_I2C.h"
#define I2C_PORT i2c1
static uint8_t SDA_READ(uint8_t iSDA)
{
return gpio_get(iSDA);
}
static void SCL_HIGH(uint8_t iSCL)
{
gpio_init(iSCL);
gpio_set_dir(iSCL, GPIO_IN);
}
static void SCL_LOW(uint8_t iSCL)
{
gpio_set_dir(iSCL, GPIO_OUT);
gpio_put(iSCL, LOW);
}
static void SDA_HIGH(uint8_t iSDA)
{
gpio_init(iSDA);
gpio_set_dir(iSDA, GPIO_IN);
}
static void SDA_LOW(uint8_t iSDA)
{
gpio_set_dir(iSDA, GPIO_OUT);
gpio_put(iSDA, LOW);
}
//
// Transmit a byte and read the ack bit
// if we get a NACK (negative acknowledge) return 0
// otherwise return 1 for success
//
#ifndef SDL2_BUILD
static int i2cByteOut(BBI2C *pI2C, uint8_t b)
{
uint8_t i, ack;
uint8_t iSDA = pI2C->iSDA;
uint8_t iSCL = pI2C->iSCL; // in case of bad C compiler
int iDelay = pI2C->iDelay;
for (i=0; i<8; i++)
{
if (b & 0x80)
SDA_HIGH(iSDA); // set data line to 1
else
SDA_LOW(iSDA); // set data line to 0
SCL_HIGH(iSCL); // clock high (slave latches data)
sleep_us(iDelay);
SCL_LOW(iSCL); // clock low
b <<= 1;
sleep_us(iDelay);
} // for i
// read ack bit
SDA_HIGH(iSDA); // set data line for reading
SCL_HIGH(iSCL); // clock line high
sleep_us(iDelay); // DEBUG - delay/2
ack = SDA_READ(iSDA);
SCL_LOW(iSCL); // clock low
sleep_us(iDelay); // DEBUG - delay/2
SDA_LOW(iSDA); // data low
return (ack == 0) ? 1:0; // a low ACK bit means success
} /* i2cByteOut() */
static int i2cByteOutFast(BBI2C *pI2C, uint8_t b)
{
uint8_t i, ack, iSDA, iSCL;
int iDelay;
iSDA = pI2C->iSDA;
iSCL = pI2C->iSCL;
iDelay = pI2C->iDelay;
if (b & 0x80)
SDA_HIGH(iSDA); // set data line to 1
else
SDA_LOW(iSDA); // set data line to 0
for (i=0; i<8; i++)
{
SCL_HIGH(iSCL); // clock high (slave latches data)
sleep_us(iDelay);
SCL_LOW(iSCL); // clock low
sleep_us(iDelay);
} // for i
// read ack bit
SDA_HIGH(iSDA); // set data line for reading
SCL_HIGH(iSCL); // clock line high
sleep_us(pI2C->iDelay); // DEBUG - delay/2
ack = SDA_READ(iSDA);
SCL_LOW(iSCL); // clock low
sleep_us(pI2C->iDelay); // DEBUG - delay/2
SDA_LOW(iSDA); // data low
return (ack == 0) ? 1:0; // a low ACK bit means success
} /* i2cByteOutFast() */
//
// Receive a byte and read the ack bit
// if we get a NACK (negative acknowledge) return 0
// otherwise return 1 for success
//
static uint8_t i2cByteIn(BBI2C *pI2C, uint8_t bLast)
{
uint8_t i;
uint8_t b = 0;
SDA_HIGH(pI2C->iSDA); // set data line as input
for (i=0; i<8; i++)
{
sleep_us(pI2C->iDelay); // wait for data to settle
SCL_HIGH(pI2C->iSCL); // clock high (slave latches data)
b <<= 1;
if (SDA_READ(pI2C->iSDA) != 0) // read the data bit
b |= 1; // set data bit
SCL_LOW(pI2C->iSCL); // cloc low
} // for i
if (bLast)
SDA_HIGH(pI2C->iSDA); // last byte sends a NACK
else
SDA_LOW(pI2C->iSDA);
SCL_HIGH(pI2C->iSCL); // clock high
sleep_us(pI2C->iDelay);
SCL_LOW(pI2C->iSCL); // clock low to send ack
sleep_us(pI2C->iDelay);
SDA_LOW(pI2C->iSDA); // data low
return b;
} /* i2cByteIn() */
//
// Send I2C STOP condition
//
static void i2cEnd(BBI2C *pI2C)
{
SDA_LOW(pI2C->iSDA); // data line low
sleep_us(pI2C->iDelay);
SCL_HIGH(pI2C->iSCL); // clock high
sleep_us(pI2C->iDelay);
SDA_HIGH(pI2C->iSDA); // data high
sleep_us(pI2C->iDelay);
} /* i2cEnd() */
static int i2cBegin(BBI2C *pI2C, uint8_t addr, uint8_t bRead)
{
int rc;
SDA_LOW(pI2C->iSDA); // data line low first
sleep_us(pI2C->iDelay);
SCL_LOW(pI2C->iSCL); // then clock line low is a START signal
addr <<= 1;
if (bRead)
addr++; // set read bit
rc = i2cByteOut(pI2C, addr); // send the slave address and R/W bit
return rc;
} /* i2cBegin() */
static int i2cWrite(BBI2C *pI2C, uint8_t *pData, int iLen)
{
uint8_t b;
int rc, iOldLen = iLen;
rc = 1;
while (iLen && rc == 1)
{
b = *pData++;
// if (b == 0xff || b == 0)
// rc = i2cByteOutFast(pI2C, b); // speed it up a bit more if all bits are ==
// else
rc = i2cByteOut(pI2C, b);
if (rc == 1) // success
{
iLen--;
}
} // for each byte
return (rc == 1) ? (iOldLen - iLen) : 0; // 0 indicates bad ack from sending a byte
} /* i2cWrite() */
static void i2cRead(BBI2C *pI2C, uint8_t *pData, int iLen)
{
while (iLen--)
{
*pData++ = i2cByteIn(pI2C, iLen == 0);
} // for each byte
} /* i2cRead() */
//
// Initialize the I2C BitBang library
// Pass the pin numbers used for SDA and SCL
// as well as the clock rate in Hz
//
void I2CInit(BBI2C *pI2C, uint32_t iClock)
{
if (pI2C == NULL) return;
if (pI2C->bWire) // use Wire library
{
i2c_init(I2C_PORT, iClock);
gpio_set_function(pI2C->iSDA, GPIO_FUNC_I2C);
gpio_set_function(pI2C->iSCL, GPIO_FUNC_I2C);
gpio_pull_up(pI2C->iSDA);
gpio_pull_up(pI2C->iSCL);
return;
}
if (pI2C->iSDA < 0xa0)
{
gpio_init(pI2C->iSDA);
gpio_init(pI2C->iSCL);
// gpio_set_dir(pI2C->iSDA, GPIO_OUT);
// gpio_set_dir(pI2C->iSCL, GPIO_OUT);
// gpio_put(pI2C->iSDA, LOW); // setting low = enabling as outputs
// gpio_put(pI2C->iSCL, LOW);
gpio_set_dir(pI2C->iSDA, GPIO_IN); // let the lines float (tri-state)
gpio_set_dir(pI2C->iSCL, GPIO_IN);
}
// For now, we only support 100, 400 or 800K clock rates
// all other values default to 100K
if (iClock >= 1000000)
pI2C->iDelay = 0; // the code execution is enough delay
else if (iClock >= 800000)
pI2C->iDelay = 1;
else if (iClock >= 400000)
pI2C->iDelay = 2;
else if (iClock >= 100000)
pI2C->iDelay = 10;
else pI2C->iDelay = (uint16_t)(1000000 / iClock);
} /* i2cInit() */
//
// Test a specific I2C address to see if a device responds
// returns 0 for no response, 1 for a response
//
uint8_t I2CTest(BBI2C *pI2C, uint8_t addr)
{
uint8_t response = 0;
if (pI2C->bWire)
{
int ret;
uint8_t rxdata;
ret = i2c_read_blocking(I2C_PORT, addr, &rxdata, 1, false);
return (ret >= 0);
}
if (i2cBegin(pI2C, addr, 0)) // try to write to the given address
{
response = 1;
}
i2cEnd(pI2C);
return response;
} /* I2CTest() */
//
// Scans for I2C devices on the bus
// returns a bitmap of devices which are present (128 bits = 16 bytes, LSB first)
// A set bit indicates that a device responded at that address
//
void I2CScan(BBI2C *pI2C, uint8_t *pMap)
{
int i;
for (i=0; i<16; i++) // clear the bitmap
pMap[i] = 0;
for (i=1; i<128; i++) // try every address
{
if (I2CTest(pI2C, i))
{
pMap[i >> 3] |= (1 << (i & 7));
}
}
} /* I2CScan() */
//
// Write I2C data
// quits if a NACK is received and returns 0
// otherwise returns the number of bytes written
//
int I2CWrite(BBI2C *pI2C, uint8_t iAddr, uint8_t *pData, int iLen)
{
int rc = 0;
if (pI2C->bWire)
{
rc = i2c_write_blocking(I2C_PORT, iAddr, pData, iLen, true); // true to keep master control of bus
return rc >= 0 ? iLen : 0;
}
rc = i2cBegin(pI2C, iAddr, 0);
if (rc == 1) // slave sent ACK for its address
{
rc = i2cWrite(pI2C, pData, iLen);
}
i2cEnd(pI2C);
return rc; // returns the number of bytes sent or 0 for error
} /* I2CWrite() */
//
// Read N bytes starting at a specific I2C internal register
//
int I2CReadRegister(BBI2C *pI2C, uint8_t iAddr, uint8_t u8Register, uint8_t *pData, int iLen)
{
int rc;
if (pI2C->bWire) // use the wire library
{
rc = i2c_write_blocking(I2C_PORT, iAddr, &u8Register, 1, true); // true to keep master control of bus
if (rc >= 0) {
rc = i2c_read_blocking(I2C_PORT, iAddr, pData, iLen, false);
}
return (rc >= 0);
}
rc = i2cBegin(pI2C, iAddr, 0); // start a write operation
if (rc == 1) // slave sent ACK for its address
{
rc = i2cWrite(pI2C, &u8Register, 1); // write the register we want to read from
if (rc == 1)
{
i2cEnd(pI2C);
rc = i2cBegin(pI2C, iAddr, 1); // start a read operation
if (rc == 1)
{
i2cRead(pI2C, pData, iLen);
}
}
}
i2cEnd(pI2C);
return rc; // returns 1 for success, 0 for error
} /* I2CReadRegister() */
//
// Read N bytes
//
int I2CRead(BBI2C *pI2C, uint8_t iAddr, uint8_t *pData, int iLen)
{
int rc;
if (pI2C->bWire) // use the wire library
{
rc = i2c_read_blocking(I2C_PORT, iAddr, pData, iLen, false);
return (rc >= 0);
}
rc = i2cBegin(pI2C, iAddr, 1);
if (rc == 1) // slave sent ACK for its address
{
i2cRead(pI2C, pData, iLen);
}
i2cEnd(pI2C);
return rc; // returns 1 for success, 0 for error
} /* I2CRead() */
//
// Figure out what device is at that address
// returns the enumerated value
//
int I2CDiscoverDevice(BBI2C *pI2C, uint8_t i)
{
uint8_t j, cTemp[8];
int iDevice = DEVICE_UNKNOWN;
if (i == 0x3c || i == 0x3d) // Probably an OLED display
{
I2CReadRegister(pI2C, i, 0x00, cTemp, 1);
cTemp[0] &= 0xbf; // mask off power on/off bit
if (cTemp[0] == 0x8) // SH1106
iDevice = DEVICE_SH1106;
else if (cTemp[0] == 3 || cTemp[0] == 6)
iDevice = DEVICE_SSD1306;
return iDevice;
}
if (i == 0x34 || i == 0x35) // Probably an AXP202/AXP192 PMU chip
{
I2CReadRegister(pI2C, i, 0x03, cTemp, 1); // chip ID
if (cTemp[0] == 0x41)
return DEVICE_AXP202;
else if (cTemp[0] == 0x03)
return DEVICE_AXP192;
}
if (i >= 0x40 && i <= 0x4f) // check for TI INA219 power measurement sensor
{
I2CReadRegister(pI2C, i, 0x00, cTemp, 2);
if (cTemp[0] == 0x39 && cTemp[1] == 0x9f)
return DEVICE_INA219;
}
// Check for Microchip 24AAXXXE64 family serial 2 Kbit EEPROM
if (i >= 0x50 && i <= 0x57) {
uint32_t u32Temp = 0;
I2CReadRegister(pI2C, i, 0xf8, (uint8_t *)&u32Temp,
3); // check for Microchip's OUI
if (u32Temp == 0x000004a3 || u32Temp == 0x00001ec0 ||
u32Temp == 0x00d88039 || u32Temp == 0x005410ec)
return DEVICE_24AAXXXE64;
}
// else if (i == 0x5b) // MLX90615?
// {
// I2CReadRegister(pI2C, i, 0x10, cTemp, 3);
// for (j=0; j<3; j++) Serial.println(cTemp[j], HEX);
// }
// try to identify it from the known devices using register contents
{
// Check for TI HDC1080
I2CReadRegister(pI2C, i, 0xff, cTemp, 2);
if (cTemp[0] == 0x10 && cTemp[1] == 0x50)
return DEVICE_HDC1080;
// Check for BME680
if (i == 0x76 || i == 0x77)
{
I2CReadRegister(pI2C, i, 0xd0, cTemp, 1); // chip ID
if (cTemp[0] == 0x61) // BME680
return DEVICE_BME680;
}
// Check for VL53L0X
I2CReadRegister(pI2C, i, 0xc0, cTemp, 3);
if (cTemp[0] == 0xee && cTemp[1] == 0xaa && cTemp[2] == 0x10)
return DEVICE_VL53L0X;
// Check for CCS811
I2CReadRegister(pI2C, i, 0x20, cTemp, 1);
if (cTemp[0] == 0x81) // Device ID
return DEVICE_CCS811;
// Check for LIS3DSH accelerometer from STMicro
I2CReadRegister(pI2C, i, 0x0f, cTemp, 1);
if (cTemp[0] == 0x3f) // WHO_AM_I
return DEVICE_LIS3DSH;
// Check for LIS3DH accelerometer from STMicro
I2CReadRegister(pI2C, i, 0x0f, cTemp, 1);
if (cTemp[0] == 0x33) // WHO_AM_I
return DEVICE_LIS3DH;
// Check for LSM9DS1 magnetometer/gyro/accel sensor from STMicro
I2CReadRegister(pI2C, i, 0x0f, cTemp, 1);
if (cTemp[0] == 0x68) // WHO_AM_I
return DEVICE_LSM9DS1;
// Check for LPS25H pressure sensor from STMicro
I2CReadRegister(pI2C, i, 0x0f, cTemp, 1);
if (cTemp[0] == 0xbd) // WHO_AM_I
return DEVICE_LPS25H;
// Check for HTS221 temp/humidity sensor from STMicro
I2CReadRegister(pI2C, i, 0x0f, cTemp, 1);
if (cTemp[0] == 0xbc) // WHO_AM_I
return DEVICE_HTS221;
// Check for MAG3110
I2CReadRegister(pI2C, i, 0x07, cTemp, 1);
if (cTemp[0] == 0xc4) // WHO_AM_I
return DEVICE_MAG3110;
// Check for LM8330 keyboard controller
I2CReadRegister(pI2C, i, 0x80, cTemp, 2);
if (cTemp[0] == 0x0 && cTemp[1] == 0x84) // manufacturer code + software revision
return DEVICE_LM8330;
// Check for MAX44009
if (i == 0x4a || i == 0x4b)
{
for (j=0; j<8; j++)
I2CReadRegister(pI2C, i, j, &cTemp[j], 1); // check for power-up reset state of registers
if ((cTemp[2] == 3 || cTemp[2] == 2) && cTemp[6] == 0 && cTemp[7] == 0xff)
return DEVICE_MAX44009;
}
// Check for ADS1115
I2CReadRegister(pI2C, i, 0x02, cTemp, 2); // Lo_thresh defaults to 0x8000
I2CReadRegister(pI2C, i, 0x03, &cTemp[2], 2); // Hi_thresh defaults to 0x7fff
if (cTemp[0] == 0x80 && cTemp[1] == 0x00 && cTemp[2] == 0x7f && cTemp[3] == 0xff)
return DEVICE_ADS1115;
// Check for MCP9808
I2CReadRegister(pI2C, i, 0x06, cTemp, 2); // manufacturer ID && get device ID/revision
I2CReadRegister(pI2C, i, 0x07, &cTemp[2], 2); // need to read them individually
if (cTemp[0] == 0 && cTemp[1] == 0x54 && cTemp[2] == 0x04 && cTemp[3] == 0x00)
return DEVICE_MCP9808;
// Check for BMP280/BME280
I2CReadRegister(pI2C, i, 0xd0, cTemp, 1);
if (cTemp[0] == 0x55) // BMP180
return DEVICE_BMP180;
else if (cTemp[0] == 0x58)
return DEVICE_BMP280;
else if (cTemp[0] == 0x60) // BME280
return DEVICE_BME280;
// Check for LSM6DS3
I2CReadRegister(pI2C, i, 0x0f, cTemp, 1); // WHO_AM_I
if (cTemp[0] == 0x69)
return DEVICE_LSM6DS3;
// Check for ADXL345
I2CReadRegister(pI2C, i, 0x00, cTemp, 1); // DEVID
if (cTemp[0] == 0xe5)
return DEVICE_ADXL345;
// Check for MPU-60x0i, MPU-688x, and MPU-9250
I2CReadRegister(pI2C, i, 0x75, cTemp, 1);
if (cTemp[0] == (i & 0xfe)) // Current I2C address (low bit set to 0)
return DEVICE_MPU6000;
else if (cTemp[0] == 0x71)
return DEVICE_MPU9250;
else if (cTemp[0] == 0x19)
return DEVICE_MPU6886;
// Check for DS3231 RTC
I2CReadRegister(pI2C, i, 0x0e, cTemp, 1); // read the control register
if (i == 0x68 &&
cTemp[0] == 0x1c) // fixed I2C address and power on reset value
return DEVICE_DS3231;
// Check for DS1307 RTC
I2CReadRegister(pI2C, i, 0x07, cTemp, 1); // read the control register
if (i == 0x68 &&
cTemp[0] == 0x03) // fixed I2C address and power on reset value
return DEVICE_DS1307;
}
return iDevice;
} /* I2CDiscoverDevice() */
#endif // SDL2_BUILD ndef