summaryrefslogtreecommitdiffstats
path: root/oled/BitBang_I2C.c
diff options
context:
space:
mode:
Diffstat (limited to 'oled/BitBang_I2C.c')
-rw-r--r--oled/BitBang_I2C.c539
1 files changed, 539 insertions, 0 deletions
diff --git a/oled/BitBang_I2C.c b/oled/BitBang_I2C.c
new file mode 100644
index 0000000..e5c34da
--- /dev/null
+++ b/oled/BitBang_I2C.c
@@ -0,0 +1,539 @@
+//
+// Bit Bang I2C library
+// Copyright (c) 2018 BitBank Software, Inc.
+// Written by Larry Bank (bitbank@pobox.com)
+// Project started 10/12/2018
+//
+// This program is free software: you can redistribute it and/or modify
+// it under the terms of the GNU General Public License as published by
+// the Free Software Foundation, either version 3 of the License, or
+// (at your option) any later version.
+//
+// This program is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with this program. If not, see <http://www.gnu.org/licenses/>.
+//
+#include <stdio.h>
+#include "pico/stdlib.h"
+#include "hardware/gpio.h"
+#include "pico/binary_info.h"
+#include "hardware/i2c.h"
+
+#include "BitBang_I2C.h"
+#define I2C_PORT i2c1
+
+static uint8_t SDA_READ(uint8_t iSDA)
+{
+ return gpio_get(iSDA);
+}
+static void SCL_HIGH(uint8_t iSCL)
+{
+ gpio_init(iSCL);
+ gpio_set_dir(iSCL, GPIO_IN);
+}
+
+static void SCL_LOW(uint8_t iSCL)
+{
+ gpio_set_dir(iSCL, GPIO_OUT);
+ gpio_put(iSCL, LOW);
+}
+
+static void SDA_HIGH(uint8_t iSDA)
+{
+ gpio_init(iSDA);
+ gpio_set_dir(iSDA, GPIO_IN);
+}
+
+static void SDA_LOW(uint8_t iSDA)
+{
+ gpio_set_dir(iSDA, GPIO_OUT);
+ gpio_put(iSDA, LOW);
+}
+
+//
+// Transmit a byte and read the ack bit
+// if we get a NACK (negative acknowledge) return 0
+// otherwise return 1 for success
+//
+
+static int i2cByteOut(BBI2C *pI2C, uint8_t b)
+{
+uint8_t i, ack;
+uint8_t iSDA = pI2C->iSDA;
+uint8_t iSCL = pI2C->iSCL; // in case of bad C compiler
+int iDelay = pI2C->iDelay;
+
+ for (i=0; i<8; i++)
+ {
+ if (b & 0x80)
+ SDA_HIGH(iSDA); // set data line to 1
+ else
+ SDA_LOW(iSDA); // set data line to 0
+ SCL_HIGH(iSCL); // clock high (slave latches data)
+ sleep_us(iDelay);
+ SCL_LOW(iSCL); // clock low
+ b <<= 1;
+ sleep_us(iDelay);
+ } // for i
+// read ack bit
+ SDA_HIGH(iSDA); // set data line for reading
+ SCL_HIGH(iSCL); // clock line high
+ sleep_us(iDelay); // DEBUG - delay/2
+ ack = SDA_READ(iSDA);
+ SCL_LOW(iSCL); // clock low
+ sleep_us(iDelay); // DEBUG - delay/2
+ SDA_LOW(iSDA); // data low
+ return (ack == 0) ? 1:0; // a low ACK bit means success
+} /* i2cByteOut() */
+
+static int i2cByteOutFast(BBI2C *pI2C, uint8_t b)
+{
+uint8_t i, ack, iSDA, iSCL;
+int iDelay;
+
+ iSDA = pI2C->iSDA;
+ iSCL = pI2C->iSCL;
+ iDelay = pI2C->iDelay;
+
+ if (b & 0x80)
+ SDA_HIGH(iSDA); // set data line to 1
+ else
+ SDA_LOW(iSDA); // set data line to 0
+ for (i=0; i<8; i++)
+ {
+ SCL_HIGH(iSCL); // clock high (slave latches data)
+ sleep_us(iDelay);
+ SCL_LOW(iSCL); // clock low
+ sleep_us(iDelay);
+ } // for i
+// read ack bit
+ SDA_HIGH(iSDA); // set data line for reading
+ SCL_HIGH(iSCL); // clock line high
+ sleep_us(pI2C->iDelay); // DEBUG - delay/2
+ ack = SDA_READ(iSDA);
+ SCL_LOW(iSCL); // clock low
+ sleep_us(pI2C->iDelay); // DEBUG - delay/2
+ SDA_LOW(iSDA); // data low
+ return (ack == 0) ? 1:0; // a low ACK bit means success
+} /* i2cByteOutFast() */
+//
+// Receive a byte and read the ack bit
+// if we get a NACK (negative acknowledge) return 0
+// otherwise return 1 for success
+//
+static uint8_t i2cByteIn(BBI2C *pI2C, uint8_t bLast)
+{
+uint8_t i;
+uint8_t b = 0;
+
+ SDA_HIGH(pI2C->iSDA); // set data line as input
+ for (i=0; i<8; i++)
+ {
+ sleep_us(pI2C->iDelay); // wait for data to settle
+ SCL_HIGH(pI2C->iSCL); // clock high (slave latches data)
+ b <<= 1;
+ if (SDA_READ(pI2C->iSDA) != 0) // read the data bit
+ b |= 1; // set data bit
+ SCL_LOW(pI2C->iSCL); // cloc low
+ } // for i
+ if (bLast)
+ SDA_HIGH(pI2C->iSDA); // last byte sends a NACK
+ else
+ SDA_LOW(pI2C->iSDA);
+ SCL_HIGH(pI2C->iSCL); // clock high
+ sleep_us(pI2C->iDelay);
+ SCL_LOW(pI2C->iSCL); // clock low to send ack
+ sleep_us(pI2C->iDelay);
+ SDA_LOW(pI2C->iSDA); // data low
+ return b;
+} /* i2cByteIn() */
+
+//
+// Send I2C STOP condition
+//
+static void i2cEnd(BBI2C *pI2C)
+{
+ SDA_LOW(pI2C->iSDA); // data line low
+ sleep_us(pI2C->iDelay);
+ SCL_HIGH(pI2C->iSCL); // clock high
+ sleep_us(pI2C->iDelay);
+ SDA_HIGH(pI2C->iSDA); // data high
+ sleep_us(pI2C->iDelay);
+} /* i2cEnd() */
+
+
+static int i2cBegin(BBI2C *pI2C, uint8_t addr, uint8_t bRead)
+{
+ int rc;
+ SDA_LOW(pI2C->iSDA); // data line low first
+ sleep_us(pI2C->iDelay);
+ SCL_LOW(pI2C->iSCL); // then clock line low is a START signal
+ addr <<= 1;
+ if (bRead)
+ addr++; // set read bit
+ rc = i2cByteOut(pI2C, addr); // send the slave address and R/W bit
+ return rc;
+} /* i2cBegin() */
+
+static int i2cWrite(BBI2C *pI2C, uint8_t *pData, int iLen)
+{
+uint8_t b;
+int rc, iOldLen = iLen;
+
+ rc = 1;
+ while (iLen && rc == 1)
+ {
+ b = *pData++;
+// if (b == 0xff || b == 0)
+// rc = i2cByteOutFast(pI2C, b); // speed it up a bit more if all bits are ==
+// else
+ rc = i2cByteOut(pI2C, b);
+ if (rc == 1) // success
+ {
+ iLen--;
+ }
+ } // for each byte
+ return (rc == 1) ? (iOldLen - iLen) : 0; // 0 indicates bad ack from sending a byte
+} /* i2cWrite() */
+
+static void i2cRead(BBI2C *pI2C, uint8_t *pData, int iLen)
+{
+ while (iLen--)
+ {
+ *pData++ = i2cByteIn(pI2C, iLen == 0);
+ } // for each byte
+} /* i2cRead() */
+//
+// Initialize the I2C BitBang library
+// Pass the pin numbers used for SDA and SCL
+// as well as the clock rate in Hz
+//
+void I2CInit(BBI2C *pI2C, uint32_t iClock)
+{
+ if (pI2C == NULL) return;
+
+ if (pI2C->bWire) // use Wire library
+ {
+ i2c_init(I2C_PORT, iClock);
+ gpio_set_function(pI2C->iSDA, GPIO_FUNC_I2C);
+ gpio_set_function(pI2C->iSCL, GPIO_FUNC_I2C);
+ gpio_pull_up(pI2C->iSDA);
+ gpio_pull_up(pI2C->iSCL);
+ return;
+ }
+ if (pI2C->iSDA < 0xa0)
+ {
+ gpio_init(pI2C->iSDA);
+ gpio_init(pI2C->iSCL);
+// gpio_set_dir(pI2C->iSDA, GPIO_OUT);
+// gpio_set_dir(pI2C->iSCL, GPIO_OUT);
+// gpio_put(pI2C->iSDA, LOW); // setting low = enabling as outputs
+// gpio_put(pI2C->iSCL, LOW);
+ gpio_set_dir(pI2C->iSDA, GPIO_IN); // let the lines float (tri-state)
+ gpio_set_dir(pI2C->iSCL, GPIO_IN);
+
+ }
+ // For now, we only support 100, 400 or 800K clock rates
+ // all other values default to 100K
+ if (iClock >= 1000000)
+ pI2C->iDelay = 0; // the code execution is enough delay
+ else if (iClock >= 800000)
+ pI2C->iDelay = 1;
+ else if (iClock >= 400000)
+ pI2C->iDelay = 2;
+ else if (iClock >= 100000)
+ pI2C->iDelay = 10;
+ else pI2C->iDelay = (uint16_t)(1000000 / iClock);
+} /* i2cInit() */
+//
+// Test a specific I2C address to see if a device responds
+// returns 0 for no response, 1 for a response
+//
+uint8_t I2CTest(BBI2C *pI2C, uint8_t addr)
+{
+uint8_t response = 0;
+
+ if (pI2C->bWire)
+ {
+ int ret;
+ uint8_t rxdata;
+ ret = i2c_read_blocking(I2C_PORT, addr, &rxdata, 1, false);
+ return (ret >= 0);
+ }
+ if (i2cBegin(pI2C, addr, 0)) // try to write to the given address
+ {
+ response = 1;
+ }
+ i2cEnd(pI2C);
+ return response;
+} /* I2CTest() */
+//
+// Scans for I2C devices on the bus
+// returns a bitmap of devices which are present (128 bits = 16 bytes, LSB first)
+// A set bit indicates that a device responded at that address
+//
+void I2CScan(BBI2C *pI2C, uint8_t *pMap)
+{
+ int i;
+ for (i=0; i<16; i++) // clear the bitmap
+ pMap[i] = 0;
+ for (i=1; i<128; i++) // try every address
+ {
+ if (I2CTest(pI2C, i))
+ {
+ pMap[i >> 3] |= (1 << (i & 7));
+ }
+ }
+} /* I2CScan() */
+//
+// Write I2C data
+// quits if a NACK is received and returns 0
+// otherwise returns the number of bytes written
+//
+int I2CWrite(BBI2C *pI2C, uint8_t iAddr, uint8_t *pData, int iLen)
+{
+ int rc = 0;
+
+ if (pI2C->bWire)
+ {
+ rc = i2c_write_blocking(I2C_PORT, iAddr, pData, iLen, true); // true to keep master control of bus
+ return rc >= 0 ? iLen : 0;
+ }
+ rc = i2cBegin(pI2C, iAddr, 0);
+ if (rc == 1) // slave sent ACK for its address
+ {
+ rc = i2cWrite(pI2C, pData, iLen);
+ }
+ i2cEnd(pI2C);
+ return rc; // returns the number of bytes sent or 0 for error
+} /* I2CWrite() */
+//
+// Read N bytes starting at a specific I2C internal register
+//
+int I2CReadRegister(BBI2C *pI2C, uint8_t iAddr, uint8_t u8Register, uint8_t *pData, int iLen)
+{
+ int rc;
+
+ if (pI2C->bWire) // use the wire library
+ {
+ rc = i2c_write_blocking(I2C_PORT, iAddr, &u8Register, 1, true); // true to keep master control of bus
+ if (rc >= 0) {
+ rc = i2c_read_blocking(I2C_PORT, iAddr, pData, iLen, false);
+ }
+ return (rc >= 0);
+ }
+ rc = i2cBegin(pI2C, iAddr, 0); // start a write operation
+ if (rc == 1) // slave sent ACK for its address
+ {
+ rc = i2cWrite(pI2C, &u8Register, 1); // write the register we want to read from
+ if (rc == 1)
+ {
+ i2cEnd(pI2C);
+ rc = i2cBegin(pI2C, iAddr, 1); // start a read operation
+ if (rc == 1)
+ {
+ i2cRead(pI2C, pData, iLen);
+ }
+ }
+ }
+ i2cEnd(pI2C);
+ return rc; // returns 1 for success, 0 for error
+} /* I2CReadRegister() */
+//
+// Read N bytes
+//
+int I2CRead(BBI2C *pI2C, uint8_t iAddr, uint8_t *pData, int iLen)
+{
+ int rc;
+
+ if (pI2C->bWire) // use the wire library
+ {
+ rc = i2c_read_blocking(I2C_PORT, iAddr, pData, iLen, false);
+ return (rc >= 0);
+ }
+ rc = i2cBegin(pI2C, iAddr, 1);
+ if (rc == 1) // slave sent ACK for its address
+ {
+ i2cRead(pI2C, pData, iLen);
+ }
+ i2cEnd(pI2C);
+ return rc; // returns 1 for success, 0 for error
+} /* I2CRead() */
+//
+// Figure out what device is at that address
+// returns the enumerated value
+//
+int I2CDiscoverDevice(BBI2C *pI2C, uint8_t i)
+{
+uint8_t j, cTemp[8];
+int iDevice = DEVICE_UNKNOWN;
+
+ if (i == 0x3c || i == 0x3d) // Probably an OLED display
+ {
+ I2CReadRegister(pI2C, i, 0x00, cTemp, 1);
+ cTemp[0] &= 0xbf; // mask off power on/off bit
+ if (cTemp[0] == 0x8) // SH1106
+ iDevice = DEVICE_SH1106;
+ else if (cTemp[0] == 3 || cTemp[0] == 6)
+ iDevice = DEVICE_SSD1306;
+ return iDevice;
+ }
+
+ if (i == 0x34 || i == 0x35) // Probably an AXP202/AXP192 PMU chip
+ {
+ I2CReadRegister(pI2C, i, 0x03, cTemp, 1); // chip ID
+ if (cTemp[0] == 0x41)
+ return DEVICE_AXP202;
+ else if (cTemp[0] == 0x03)
+ return DEVICE_AXP192;
+ }
+
+ if (i >= 0x40 && i <= 0x4f) // check for TI INA219 power measurement sensor
+ {
+ I2CReadRegister(pI2C, i, 0x00, cTemp, 2);
+ if (cTemp[0] == 0x39 && cTemp[1] == 0x9f)
+ return DEVICE_INA219;
+ }
+
+ // Check for Microchip 24AAXXXE64 family serial 2 Kbit EEPROM
+ if (i >= 0x50 && i <= 0x57) {
+ uint32_t u32Temp = 0;
+ I2CReadRegister(pI2C, i, 0xf8, (uint8_t *)&u32Temp,
+ 3); // check for Microchip's OUI
+ if (u32Temp == 0x000004a3 || u32Temp == 0x00001ec0 ||
+ u32Temp == 0x00d88039 || u32Temp == 0x005410ec)
+ return DEVICE_24AAXXXE64;
+ }
+
+// else if (i == 0x5b) // MLX90615?
+// {
+// I2CReadRegister(pI2C, i, 0x10, cTemp, 3);
+// for (j=0; j<3; j++) Serial.println(cTemp[j], HEX);
+// }
+ // try to identify it from the known devices using register contents
+ {
+ // Check for TI HDC1080
+ I2CReadRegister(pI2C, i, 0xff, cTemp, 2);
+ if (cTemp[0] == 0x10 && cTemp[1] == 0x50)
+ return DEVICE_HDC1080;
+
+ // Check for BME680
+ if (i == 0x76 || i == 0x77)
+ {
+ I2CReadRegister(pI2C, i, 0xd0, cTemp, 1); // chip ID
+ if (cTemp[0] == 0x61) // BME680
+ return DEVICE_BME680;
+ }
+ // Check for VL53L0X
+ I2CReadRegister(pI2C, i, 0xc0, cTemp, 3);
+ if (cTemp[0] == 0xee && cTemp[1] == 0xaa && cTemp[2] == 0x10)
+ return DEVICE_VL53L0X;
+
+ // Check for CCS811
+ I2CReadRegister(pI2C, i, 0x20, cTemp, 1);
+ if (cTemp[0] == 0x81) // Device ID
+ return DEVICE_CCS811;
+
+ // Check for LIS3DSH accelerometer from STMicro
+ I2CReadRegister(pI2C, i, 0x0f, cTemp, 1);
+ if (cTemp[0] == 0x3f) // WHO_AM_I
+ return DEVICE_LIS3DSH;
+
+ // Check for LIS3DH accelerometer from STMicro
+ I2CReadRegister(pI2C, i, 0x0f, cTemp, 1);
+ if (cTemp[0] == 0x33) // WHO_AM_I
+ return DEVICE_LIS3DH;
+
+ // Check for LSM9DS1 magnetometer/gyro/accel sensor from STMicro
+ I2CReadRegister(pI2C, i, 0x0f, cTemp, 1);
+ if (cTemp[0] == 0x68) // WHO_AM_I
+ return DEVICE_LSM9DS1;
+
+ // Check for LPS25H pressure sensor from STMicro
+ I2CReadRegister(pI2C, i, 0x0f, cTemp, 1);
+ if (cTemp[0] == 0xbd) // WHO_AM_I
+ return DEVICE_LPS25H;
+
+ // Check for HTS221 temp/humidity sensor from STMicro
+ I2CReadRegister(pI2C, i, 0x0f, cTemp, 1);
+ if (cTemp[0] == 0xbc) // WHO_AM_I
+ return DEVICE_HTS221;
+
+ // Check for MAG3110
+ I2CReadRegister(pI2C, i, 0x07, cTemp, 1);
+ if (cTemp[0] == 0xc4) // WHO_AM_I
+ return DEVICE_MAG3110;
+
+ // Check for LM8330 keyboard controller
+ I2CReadRegister(pI2C, i, 0x80, cTemp, 2);
+ if (cTemp[0] == 0x0 && cTemp[1] == 0x84) // manufacturer code + software revision
+ return DEVICE_LM8330;
+
+ // Check for MAX44009
+ if (i == 0x4a || i == 0x4b)
+ {
+ for (j=0; j<8; j++)
+ I2CReadRegister(pI2C, i, j, &cTemp[j], 1); // check for power-up reset state of registers
+ if ((cTemp[2] == 3 || cTemp[2] == 2) && cTemp[6] == 0 && cTemp[7] == 0xff)
+ return DEVICE_MAX44009;
+ }
+
+ // Check for ADS1115
+ I2CReadRegister(pI2C, i, 0x02, cTemp, 2); // Lo_thresh defaults to 0x8000
+ I2CReadRegister(pI2C, i, 0x03, &cTemp[2], 2); // Hi_thresh defaults to 0x7fff
+ if (cTemp[0] == 0x80 && cTemp[1] == 0x00 && cTemp[2] == 0x7f && cTemp[3] == 0xff)
+ return DEVICE_ADS1115;
+
+ // Check for MCP9808
+ I2CReadRegister(pI2C, i, 0x06, cTemp, 2); // manufacturer ID && get device ID/revision
+ I2CReadRegister(pI2C, i, 0x07, &cTemp[2], 2); // need to read them individually
+ if (cTemp[0] == 0 && cTemp[1] == 0x54 && cTemp[2] == 0x04 && cTemp[3] == 0x00)
+ return DEVICE_MCP9808;
+
+ // Check for BMP280/BME280
+ I2CReadRegister(pI2C, i, 0xd0, cTemp, 1);
+ if (cTemp[0] == 0x55) // BMP180
+ return DEVICE_BMP180;
+ else if (cTemp[0] == 0x58)
+ return DEVICE_BMP280;
+ else if (cTemp[0] == 0x60) // BME280
+ return DEVICE_BME280;
+
+ // Check for LSM6DS3
+ I2CReadRegister(pI2C, i, 0x0f, cTemp, 1); // WHO_AM_I
+ if (cTemp[0] == 0x69)
+ return DEVICE_LSM6DS3;
+
+ // Check for ADXL345
+ I2CReadRegister(pI2C, i, 0x00, cTemp, 1); // DEVID
+ if (cTemp[0] == 0xe5)
+ return DEVICE_ADXL345;
+
+ // Check for MPU-60x0i, MPU-688x, and MPU-9250
+ I2CReadRegister(pI2C, i, 0x75, cTemp, 1);
+ if (cTemp[0] == (i & 0xfe)) // Current I2C address (low bit set to 0)
+ return DEVICE_MPU6000;
+ else if (cTemp[0] == 0x71)
+ return DEVICE_MPU9250;
+ else if (cTemp[0] == 0x19)
+ return DEVICE_MPU6886;
+
+ // Check for DS3231 RTC
+ I2CReadRegister(pI2C, i, 0x0e, cTemp, 1); // read the control register
+ if (i == 0x68 &&
+ cTemp[0] == 0x1c) // fixed I2C address and power on reset value
+ return DEVICE_DS3231;
+
+ // Check for DS1307 RTC
+ I2CReadRegister(pI2C, i, 0x07, cTemp, 1); // read the control register
+ if (i == 0x68 &&
+ cTemp[0] == 0x03) // fixed I2C address and power on reset value
+ return DEVICE_DS1307;
+
+ }
+ return iDevice;
+} /* I2CDiscoverDevice() */